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Abstract
We study the self-interaction effects for the Dirac particle moving in an external
field created by static charges in (1 + 1) dimensions. Assuming that the total
electric charge of the system vanishes, we show that the asymptotically linearly
rising part of the external potential responsible for the nonexistence of bound
states in the external field problem without self-interaction is cancelled by the
self-potential of the zero mode of the Dirac particle charge density. We derive
the Dirac equation which includes the self-potential of the non-zero modes and
is nonlinear. We solve the spectrum problem in the case of two external positive
charges of the same value and prove that the Dirac particle and external charges
are confined in a stable system.

PACS numbers: 0365P, 1220, 3410, 4250

1. Introduction

The problem of motion of the Dirac particle in an external field can be studied in different
approximations. In the vanishing self-interaction approximation we neglect the effects of self-
interaction, i.e. the fact that the Dirac particle creates its own radiation field and interacts with
it. Only the interaction between the Dirac particle and external field is taken into account. If
the external field is created by static charges, then this interaction is described by the Coulomb
potential.

However, the vanishing self-interaction approximation cannot be applied universally; in
some cases it leads to incorrect results and even to paradoxes. In particular, if we take in (1+1)
dimensions a system of two spin- 1

2 particles of opposite charges coupled by an instantaneous
Coulomb interaction and assume that one of the particles is much heavier (proton), while the
lighter particle (electron) moves in the Coulomb field of the heavier one, then it turns out that
the system does not have discrete energy levels [1]. In other words, in (1 + 1) dimensions

1 Permanent address: Institute of Physics, Academy of Sciences of Azerbaijan, Huseyn Javid pr. 33, 370143 Baku,
Azerbaijan.

0305-4470/01/081771+13$30.00 © 2001 IOP Publishing Ltd Printed in the UK 1771



1772 F M Saradzhev

the hydrogen atom does not exist. That happens not only for hydrogen-like systems with an
infinitely heavy source of potential, but also for positronium-like systems.

It is therefore of principal importance to include self-interaction. We need the self-field
effects to obtain the full picture of the interaction between the electromagnetic field and
Dirac matter as well as to make that picture self-consistent. In the self-field formulation,
the electromagnetic field has as its source all the charged particles which in turn move in this
field. The total electromagnetic field is the sum of external and self-field parts. The external
part is created by some external sources which are not dynamically relevant, and the self-field
is created by the Dirac particle itself.

In this paper we aim to study the effects of self-interaction for the Dirac particle in (1 + 1)
dimensions in connection with the result of [1]. We want to determine whether in the presence
of the self-field the Dirac particle and external charges can be confined in a stable system
characterized by discrete energy levels.

Models in (1 + 1) dimensions are interesting as simpler models for the discussion of
different aspects of realistic particle physics models in (3 + 1) dimensions. At the same time,
(1 + 1)-dimensional models are interesting in their own right and have some peculiarities
which make the physics in (1 + 1) dimensions different (in principle) from the physics in
(3+1) dimensions. One of these peculiarities is that the Coulomb potential on the line is rising
linearly at spatial infinities. Only the linear Coulomb potential is responsible for the paradox
mentioned above.

One-dimensional models of spin- 1
2 particles also have applications in condensed matter

physics. It is enough to mention the one-dimensional electronic liquid model or the Thirring
model. The problem of the existence of bound states for a Dirac particle in the presence of a
static charge distribution may be useful for understanding the formation and decay of bound
states for these particles in other one-dimensional models with more complicated interaction.

This paper is organized as follows. In section 2, we first neglect self-interaction and
consider the Dirac particle moving in a potential created by external static charges. We find the
asymptotics of the eigenfunctions of the Dirac Hamiltonian at spatial infinities. In accordance
with [1], for any value of energy the eigenfunctions are not normalizable and cannot correspond
to a discrete spectrum. In section 3, we introduce the self-field of the Dirac particle. Following
the method of [2–4], we derive the Dirac equation which includes the nonlinear self-field term.
In section 4, we study this equation for a specific choice of the external potential, namely for
the case of two external positive charges of the same value. We solve the spectrum problem in
the approximation when the discrete energy values are determined by the interaction between
the Dirac particle and external field, while the self-interaction shifts these values by a small
amount. Section 5 contains our conclusions.

2. The Dirac particle in an external field

The Dirac equation for a particle of charge e and mass m moving in an external field is

[γ µ(ih̄c∂µ − eAext
µ )−mc2]ψ(x) = 0 (2.1)

where (µ, ν = 0, 1), γ µ are 2 × 2 Dirac matrices,

γ 0 =
(

0 1
1 0

)
γ 1 =

(
0 −1
1 0

)

and the field ψ(x) = ψ(x1, t) is the two-component Dirac spinor. The partial derivatives are
defined as ∂0 = ∂/c∂t , ∂1 = ∂/∂x1.
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We assume that the external field is defined by

Aext
µ (x1, t) = (Aext

0 = Aext
0 (x1), A

ext
1 = 0)

which is a time-independent scalar potential. We assume next that the potential is created by
static charges, so we can use the following ansatz:

Aext
0 (x1) = − 1

2Q
ext|x1| + Āext

0 (x1) (2.2)

where Qext is total external charge, and Āext
0 is a potential which does not increase at spatial

infinities, i.e. Āext
0 (x1 = ±∞) are finite constants.

In particular, one external charge q at the point x1 = 0 creates the current j ext
0 = qδ(x1)

that corresponds to the scalar potential Aext
0 = − 1

2q|x1|. Two external charges of the same q
value taken at the points x1 = a and −a create the current j ext

0 = q(δ(x1 − a) + δ(x1 + a)) and
potential of the form (2.2) with Qext = 2q and

Āext
0 =

{
q(|x1| − a) for |x1| � a

0 for |x1| � a.
(2.3)

We can easily check that the ansatz (2.2) is valid for an arbitrary number of external static
charges q1, q2, q3, . . . . Therefore, the potential for these charges can be always given as the
sum of two parts, linearly rising and finite at spatial infinities.

If we act on both sides of (2.1) by [−γ µ(ih̄c∂µ − eAext
µ ) − mc2], then we come to the

second-order differential equation for ψ [5, 6][
DµD

µ + eSλµF ext
λµ +

m2c2

h̄2

]
ψ = 0 (2.4)

where

Dµ ≡ ∂µ + i
e

h̄c
Aext
µ .

This equation looks like the Klein–Gordon one, except the additional term eSλµF ext
λµ with

Sλµ ≡ 1
2 i[γ λ, γ µ]− F ext

λµ ≡ ∂λA
ext
µ − ∂µA

ext
λ .

In (3 + 1) dimensions, the spatial components of Sλµ are related to the spin of the Dirac
particle, so the additional term describes the interaction between the particle spin and the
electromagnetic field.

In (1 + 1) dimensions, Sλµ has no spatial components, and we cannot therefore introduce
spin. The only nonvanishing component S01 = iα, where α ≡ γ 5 = γ 0γ 1, allows us to
introduce chirality. If we write ψ in the component form as

ψ =
(
u1

u2

)
and define the operators

P± ≡ 1
2 (1 ± α)

then

P+ψ =
(
u1

0

)
P−ψ =

(
0
u2

)
i.e. the upper component is of positive chirality and the lower one of negative chirality.

Moreover, there is no magnetic field in (1 + 1) dimensions, so the only nonvanishing
component of F ext

λµ is

F ext
01 = −∂A

ext
0

∂x1
≡ Eext
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where Eext is the external electric field. The additional term in (4) becomes

eSλµF ext
λµ = ieαEext

indicating that positive and negative chirality components are coupled differently to the external
electric field.

In the Hamiltonian form equation (2.1) reads

Hψ ≡ ih̄
∂

∂t
ψ =

(
ih̄cα

∂

∂x1
+ βmc2 + eAext

0

)
ψ (2.5)

where β ≡ γ 0. The eigenvalue problem for the Dirac Hamiltonian, Hψ = Eψ , reduces to
the problem of solving the system of two equations(

ih̄
∂

∂x1
+
eAext

0 − E

c

)
u1 = −mcu2 (2.6a)(

−ih̄
∂

∂x1
+
eAext

0 − E

c

)
u2 = −mcu1. (2.6b)

We easily decouple u1 and u2 and rewrite these equations equivalently as[
h̄2 ∂

2

∂x2
1

± i
eh̄

c
Eext +

(
eAext

0 − E

c

)2
]
u1(2) = m2c2u1(2) (2.7)

the sign (+) corresponding to the positive chirality component and (−) to the negative one.
If the Dirac particle and external charges are confined in a stable system, then

equations (2.7) must reveal a set of bound states. For a discrete set of energies in the band
|E| < mc2, these equations must have solutions which decrease exponentially at infinities and
are normalizable.

However, for Qext 	= 0, the external potential is asymptotically linearly rising at spatial
infinities, so the term (e2(Qext)2x2

1 )/(4c
2) dominates in equations (2.7) and prevents any bound

state. Indeed, the asymptotics of u1(2) for all possible energies in the band are determined by
the equation [

∂2

∂x2
1

+
e2(Qext)2

4c2h̄2 x2
1

]
u1(2)(|x1| → ∞) = 0. (2.8)

This is the inverted oscillator equation [7]. Its general solution can be expressed in terms of
parabolic cylinder functions. One way to choose two linearly independent solutions of (2.8)
is to take the real functions W(0, x1) and W(0,−x1) (we follow the notations of [7]) whose
asymptotic behaviour is well known:

W(0, x1 → +∞) ≈ 1√
x1

cos

( |eQext|
ch̄

x1 +
π

4

)

W(0, x1 → −∞) ≈ 1√|x1|
sin

( |eQext|
ch̄

x1 +
π

4

)
.

We can represent u1(2)(|x1| → ∞) as linear combinations of W(0, x1 → ±∞) with
arbitrary coefficients. Regardless of the choice for these coefficients, the normalization integral∫ x1

dx ′
1 (|u1(x

′
1)|2 + |u2(x

′
1)|2)

diverges for large x1. This means that the probability of finding the Dirac particle and external
charges infinitely separated remains finite at all times. Consequently, equations (2.7) have
solutions for an arbitrary energy, but these solutions can never represent a bound state.
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3. Self-interaction

Let us now introduce the self-field of the Dirac particle and investigate how it influences the
bound state spectrum. To derive an equation for the Dirac particle in the presence of both the
external and its own radiation fields, we start first with the action

S =
∫ ∞

−∞
dt
∫ ∞

−∞
dx1 [ψ̄(x1, t)(γ

µih̄c∂µ −mc2)ψ(x1, t)− j tot
µ (x1, t)A

µ(x1, t)

− 1
4Fλµ(x1, t)F

λµ(x1, t)] (3.1)

where

j tot
µ = jµ + j ext

µ

is a total current which includes both the Dirac matter current jµ ≡ eψ̄γ µψ and the one
created by external static charges.

If we expand the field ψ into the Fourier integral

ψ(x1, t) = 1√
2π

∫ ∞

−∞
dp · e

i
h̄
px1ψ(p, t)

then the charge density of the Dirac matter becomes

j0(x1, t) = eψ%(x1, t)ψ(x1, t) = e

2π

∫ ∞

−∞
dk · e− i

h̄
kx1ρ(k, t) (3.2)

where

ρ(k, t) ≡
∫ ∞

−∞
dpψ%(p + k, t)ψ(p, t).

The zero-momentum component of the density determines the matter charge

Q ≡
∫ ∞

−∞
dx j0(x1, t) = eh̄ρ(0, t).

Separating in (3.2) ρ(0, t) and ρ(k, t) with the non-zero momentums k 	= 0, we rewrite (3.2)
as

j0(x1, t) = Qδ(x1) + j̄0(x1, t) (3.3)

the density

j̄0(x1, t) ≡ e

2π

∫ ∞

−∞
dk · e− i

h̄
kx1 ρ̄(k, t)

ρ̄(k, t) ≡ ρ(k, t)− ρ(0, t)

corresponding to a zero charge,
∫∞
−∞ dx1 j̄0(x1, t) = 0.

With the choice of the gauge ∂µAµ = 0, the Maxwell equations take the form

�Aµ = j tot
µ (3.4)

and are solved by

Aµ(x1, t) = c

∫ ∞

−∞
dx ′

1

∫ ∞

−∞
dt ′Dc(x1 − x ′

1; t − t ′)j tot
µ (x

′
1, t

′) = Aself
µ (x1, t) + Aext

µ (x1, t)

(3.5)

where Dc(x1, t) is the causal Green function

�Dc(x1, t) = δ(x1)δ(ct)

Dc(x1, t) ≡ − 1

(2π)2

∫ ∞

−∞
dq0

∫ ∞

−∞
dq1

1

q2
0 − q2

1 + iε
e− i

h̄
cq0te

i
h̄
q1x1 (3.6)
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and � ≡ ∂µ∂
µ.

Substituting (3.3) and (3.6) into the expression for the electromagnetic field, we obtain its
external and self-field parts in the form

Aext
µ (x1, t) = (− 1

2Q
ext|x1| + Āext

0 (x1))δµ0

that agrees with (2.2), and

Aself
µ (x1, t) = − 1

2Q|x1|δµ0 + Āself
µ (x1, t)

with

Āself
µ (x1, t) ≡ c

∫ ∞

−∞
dx ′

1

∫ ∞

−∞
dt ′Dc(x1 − x ′

1; t − t ′)j̄µ(x ′
1, t

′)

and

j̄µ(x1, t) ≡ jµ(x1, t)−Qδµ0δ(x1).

Putting both parts together, we see that if the total charge of the system vanishes

Qtot ≡ Q +Qext = 0 (3.7)

then the linearly rising potentials produced by the Dirac particle and external charges cancel
each other, and for the total electromagnetic field we get

Aµ(x1, t) = Āself
µ (x1, t) + Āext

0 (x1)δµ0. (3.8)

One of the Maxwell equations (3.4) is the Gauss’ law
∂

∂x1
E = j tot

0 (3.9)

where the electric field also consists of two parts, self-field and external,

E = F01 = E self + Eext.

Integrating equation (3.9) over x1, we obtain

E self(+∞)− E self(−∞) = −(Eext(+∞)− Eext(−∞))

i.e. the difference in the values of the self-field electric field at the ends of x1-line balances the
one of the external electric field, and for the total electric field E(+∞) = E(−∞).

The vanishing of the total charge therefore allows one to balance the sources of electric
flux and is important from a physical point of view. For Qtot 	= 0, the balance is destroyed,
and, as we have seen in the previous section, the Dirac particle and external charges escape
from each other and cannot create a stable system.

The condition (3.7) has its analogues in the second-quantized version of different (1 + 1)-
dimensional models. In the Schwinger model [8], the total electric charge is known to be
zero on the physical states [9, 10]. According to Schwinger [8], when a charge is inserted
into the vacuum, the accompanying electric field polarizes the vacuum producing complete
compensation of the charge. In (1 + 1)-dimensional QCD, we restrict ourselves to colour-
neutral states, since the presence of uncompensated colour charge in space leads to a growth
of the fields at infinities and makes the total energy of the system infinite [11].

Inserting (3.8) into the action and using a partial integration, we have

S = S0 + Sself

S0 ≡
∫ ∞

−∞
dt
∫ ∞

−∞
dx1 [ψ̄(x1, t)(γ

µih̄c∂µ −mc2)ψ(x1, t)

−eψ̄(x1, t)γ
µψ(x1, t) · Āext

µ − 1
2j

µ
extĀ

ext
µ ]

Sself ≡
∫ ∞

−∞
dt
∫ ∞

−∞
dx1 [−eψ̄(x1, t)γ

µψ(x1, t)Ā
self
µ − 1

4 F̄
self
λµ F̄

λµ

self ]

(3.10)



The bound state problem for a Dirac particle in an external static charge distribution in (1 + 1) dimensions 1777

Figure 1. The potential Ā0(x1) in the case of two external charges of the same value q > 0 at the
points x1 = ±a.

with F̄ self
λµ ≡ ∂λĀ

self
µ − ∂µĀ

self
λ and Āext

µ ≡ Āext
0 δµ0. Variation of this action with respect to the

Dirac field yields the following Dirac equation:

[γ µ(ih̄c∂µ − eĀext
µ )−mc2]ψ(x) = eγ µĀself

µ ψ(x). (3.11)

It is essential that neither the linearly rising part of the external electric field nor the one of the
self-field enter this equation.

Since Āself
µ is expressed in terms of the current j̄µ, (3.11) is a nonlinear integral equation

for ψ . In the next section, we will continue our study of equation (3.11) for a specific choice
of the external electric field.

4. Example

(1) As an example, let us consider in detail the case of two external charges of the same value
q > 0 at the points x1 = ±a and find first the spectrum for the vanishing Āself

µ .
With the external potential Āext

0 given by (2.3) (see figure 1), the Dirac Hamiltonian is
invariant under a modified parity transformation generated by

T̂ ≡ βÎ (4.1)

where the action of Î on any function of x1 is defined as

Î f (x1) = f (−x1).

The Hamiltonian eigenfunctions must therefore be even or odd under parity reversal. Since
the transformation for ψ is

ψ(x1, t) → ψ ′(x1, t) = βψ(−x1, t)

we get

u1(x1, t) = u2(−x1, t)
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for even eigenfunctions, and

u1(x1, t) = −u2(−x1, t)

for odd ones.
To solve the system (2.6a), (2.6b) with Āext

0 , we have to find general solutions in the
regions −a � x1 � a, x1 � a and x1 � −a, and match them at the boundaries so that the
eigenfunction and its first derivative is continuous. We also wish to distinguish the regions of
positive and negative values of x1, and so introduce

u+
1(2) ≡ u1(2)(x1 > 0) u−

1(2) ≡ u1(2)(x1 < 0).

To simplify the notation, we define in the region 0 � x1 � a the new dimensionless variable

z+ ≡ e−i π4

√
eq

h̄c

(
x1 − a − E

eq

)
. (4.2)

The system (2.6a), (2.6b) then becomes(
∂

∂z+
+ z+

)
u+

1 = i

√
2

/
ei π4 u+

2 (4.3a)

(
− ∂

∂z+
+ z+

)
u+

2 = i

√
2

/
ei π4 u+

1 (4.3b)

where/ ≡ (2eqh̄)/(m2c3) is a dimensionless constant. Decoupling u+
1 and u+

2 , we obtain the
system of two second-order differential equations

∂2

∂z2
+

u+
1(2) + [(2ν ± 1)− z2

+]u+
1(2) = 0 (4.4)

with ν ≡ −i//.
The system (4.4) is solved by hypergeometric functions. If we introduce

y+ ≡ z2
+ v+

1(2) ≡ e
1
2 z

2
+ · u+

1(2)

then (4.4) reduces to

y+
∂2

∂y2
+

v1,+ +

(
1

2
− y+

)
∂

∂y+
v1,+ +

ν

2
v1,+ = 0 (4.5a)

y+
∂2

∂y2
+

v2,+ +

(
1

2
− y+

)
∂

∂y+
v2,+ +

ν − 1

2
v2,+ = 0 (4.5b)

which are just the hypergeometric function equations. For the first equation, the linearly
independent solutions are F(− ν

2 ; 1
2 ; y+) and y1/2

+ F( 1−ν
2 ; 3

2 ; y+), while for the second one

F( 1−ν
2 ; 1

2 ; y+) and y1/2
+ F(1 − ν

2 ; 3
2 ; y+).

A similar analysis can be performed in the region −a � x1 � 0. With the variable

z− ≡ e−i π4

√
eq

h̄c

(
x1 + a +

E

eq

)

the equations for u−
1(2) read

∂2

∂z2−
u−

1(2) + [(2ν ∓ 1)− z2
−]u−

1(2) = 0. (4.6)

The linearly independent solutions for v−
1(2) ≡ e

1
2 z

2
− · u−

1(2) are F( 1−ν
2 ; 1

2 ; y−), y
1/2
− F(1 −

ν
2 ; 3

2 ; y−) and F(− ν
2 ; 1

2 ; y−), y
1/2
− F( 1−ν

2 ; 3
2 ; y−), correspondingly, where y− ≡ z2

−.
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Taking linear combinations of these solutions, we can construct eigenfunctions

ψ± ≡
(
u±

1
u±

2

)
which fulfil the matching conditions

ψ±(x1 = +0) = ψ−(x1 = −0)
∂ψ+

∂x1
(x1 = +0) = ∂ψ−

∂x1
(x1 = −0)

and are even or odd under parity reversal.
The even eigenfunctions up to a constant factor are

ψ+
even = e− 1

2 z
2
+

( √
/
2 ei π4 F(− ν

2 ; 1
2 ; z2

+) +Gz+F(
1−ν

2 ; 3
2 ; z2

+)

z+F(1 − ν
2 ; 3

2 ; z2
+)−G

√
/
2 ei π4 F( 1−ν

2 ; 1
2 ; z2

+)

)
(4.7a)

for 0 � x1 � a, and

ψ−
even = e− 1

2 z
2
−

(−z−F(1 − ν
2 ; 3

2 ; z2
−)−G

√
/
2 ei π4 F( 1−ν

2 ; 1
2 ; z2

−)√
/
2 ei π4 F(− ν

2 ; 1
2 ; z2

−)−Gz−F( 1−ν
2 ; 3

2 ; z2
−)

)
(4.7b)

for −a � x1 � 0. The constant

G = G(/, za) ≡ 2νzaF (1 − ν
2 ; 3

2 ; 2νz2
a) + F(− ν

2 ; 1
2 ; 2νz2

a)

2νzaF ( 1−ν
2 ; 3

2 ; 2νz2
a)− F( 1−ν

2 ; 1
2 ; 2νz2

a)

is modulo 1, |G|2 = 1, and za ≡ (E + eqa)/(mc2).
The odd eigenfunctions are

ψ+
odd = e− 1

2 z
2
+

( √
/
2 ei π4 F(− ν

2 ; 1
2 ; z2

+) + Ḡz+F(
1−ν

2 ; 3
2 ; z2

+)

z+F(1 − ν
2 ; 3

2 ; z2
+)− Ḡ

√
/
2 ei π4 F( 1−ν

2 ; 3
2 ; z2

+)

)
(4.8a)

for 0 � x1 � a, and

ψ−
odd = e− 1

2 z
2
−

(
z−F(1 − ν

2 ; 3
2 ; z2

−) + Ḡ
√
/
2 ei π4 F( 1−ν

2 ; 1
2 ; z2

−)

−
√
/
2 ei π4 F(− ν

2 ; 1
2 ; z2

−) + Ḡz−F( 1−ν
2 ; 3

2 ; z2
−)

)
(4.8b)

for −a � x1 � 0, where

Ḡ(/, za) = −G(/,−za).
For x1 � a it can be checked that

ψ+
even = s

(
E − iκ
mc2

)
e− 1

h̄c
κx1 (4.9)

with

κ ≡
√
m2c4 − E2

satisfies the Dirac equation. Matching (4.7a) and (4.9) at x1 = a and eliminating s we obtain
the equation that determines the spectrum of the even bound states

E = mc2 cos(λG(E)) (4.10)

where

λG ≡ arg

(
2νGz0F(

1−ν
2 ; 3

2 ; 2νz2
0)− F(− ν

2 ; 1
2 ; 2νz2

0)

2νz0F(1 − ν
2 ; 3

2 ; 2νz2
0) +GF( 1−ν

2 ; 1
2 ; 2νz2

0)

)
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and z0 ≡ E/(mc2). The matching condition at x1 = −a for (4.7b) and

ψ−
even = s

(
mc2

E − iκ

)
e

1
h̄c
κx1 x1 � −a (4.11)

gives the same spectrum equation.
In a similar way we can derive the equation that determines the spectrum of the odd bound

states:

E = mc2 cos(λḠ(E)). (4.12)

(2) With the self-field term Āself
µ the Dirac equation is nonlinear in ψ , so the spectrum

problem becomes essentially more complicated. As in [2–4], we can solve the problem in the
approximation when the self-interaction contribution to the energy spectrum is very small with
respect to the contribution of the interaction between the Dirac particle and the external field.

Let us assume that equations (4.10) and (4.12) haveN+ andN− solutions, correspondingly,
i.e. for Āself

µ = 0 there are N+ even and N− odd bound states. The total number of discrete
states in the band |E| < mc2 is then N = N+ +N−. Let us denote the normalized bound state
eigenfunctions byψext

n ,n = 1, N . Up to a normalization factorψext
n coincide with (4.7a), (4.7b)

for even states and with (4.8a), (4.8b) for odd states in the region −a � x1 � a.
In (3 + 1) dimensions, the self-field effects are of the order of the fine structure constant

and higher. This allows us to restrict our calculations to the first order of this constant. In our
study, to make the self-field effects small we assume that |e| � q, so the self-interaction shifts
the bound state energies by a small amount

En = Eext
n +/Eself

n (4.13)

and does not change the number of states. In (4.13) Eext
n are discrete spectrum energies

of the external field problem without Āself
µ . The eigenfunctions of the discrete spectrum

cannot be characterized now by a definite parity, because the self-interaction term in the Dirac
Hamiltonian is not in general invariant under parity reversal.

For the nonlinear Dirac equation the superposition principle does not hold. It is not possible
to expand the exact solutions of this nonlinear equation as a superposition of the linear equation
solutions ψext

n with arbitrary time-dependent coefficients, even though ψext
n form a complete

set. What we can use now is the Fourier expansion in the time coordinate [2–4]

ψ(x1, t) =
N∑
n=1

ψn(x1)e
− i
h̄
Ent +

∫ −mc2

−∞
dE ψ(x1, E)e

− i
h̄
Et +

∫ ∞

mc2
dE ψ(x1, E)e

− i
h̄
Et (4.14)

in which the time behaviour is known, and of the form exp(− i
h̄
Et). The functions ψn(x1),

ψ(x1, E) and the energies En are unknown.
To derive information about the spectrum it is simpler and more convenient to work with

the action rather than with the Dirac equation. Since manipulations which we are going to do
below are valid in both discrete and continuous spectrums, instead of (4.14) we can use the
following compact expression:

ψ(x1, t) =
∑

n
ψn(x1)e

− i
h̄
Ent (4.15)

where
∑

n means summation over discrete states and integration over continuous ones.
If we insert the Fourier expansion into the action, then up to the terms depending only on

the external field we obtain

S0 =
∑

n,m

∫ ∞

−∞
dt
∫ ∞

−∞
dx1 ψ̄n(x1)[γ

µ(ih̄c∂µ − eĀext
µ )−mc2]ψm(x1)e

i
h̄
ωnmt
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where ωnm ≡ En − Em, and

Sself = −e
2c

2

∑
n,m,r,s

∫ ∞

−∞
dt
∫ ∞

−∞
dx1

∫ ∞

−∞
dt ′
∫ ∞

−∞
dx ′

1 [jµnm(x1)D
c(x1 − x ′

1; t − t ′)jrs,µ(x ′
1)

−j 0
nm(x1)D

c(0; t − t ′)jrs,0(x ′
1)]e

i
h̄
(ωnmt+ωrs t ′)

where

jµnm(x1) ≡ ψ̄n(x1)γ
µψm(x1).

After time integration for S0 we find

S0 = 2πh̄
∑

n,m

∫ ∞

−∞
dx1 ψ

%
n(x1)(Em −H)ψm(x1)δ(ωnm) (4.16)

with H given by (2.5). If the ψn(x1) were solutions of the external field problem with the
vanishing self-potential Āself

µ , i.e. ψext
n (x1), then this expression would be zero for En = Eext

n .
The ψext

n (x1) minimize S0 alone. However, now the entire action S, of which S0 is only one
term, must be minimized as a whole.

Time integrations in Sself can be performed using (3.6) and we can write the self-field part
of the action entirely in terms of the Fourier components of the currents:

Sself = e2h̄2

2

∑
n,m,r,s

δ(ωnm + ωrs)
∫ ∞

−∞

dq1
1
c
ω2
nm − q2

1 + iε

×(T µnm(q1)Trs,µ(−q1)− T 0
nm(0)T

0
rs(0)) (4.17)

where

T µnm(q1) ≡
∫ ∞

−∞
dx1 j

µ
nm(x1)e

i
h̄
q1x1 . (4.18)

The ψn(x1) here are still exact solutions for which the action S will vanish identically.
In the approximation of the small self-interaction contribution, we can solve the spectrum

problem iteratively. To the lowest order of iteration we replace ψn(x1) with ψext
n (x1) and

then solve for En which have the form (4.13). The number of discrete states without and
with the self-field term Āself

µ is assumed to be the same, and transitions between discrete and
continuous states are neglected. Omitting the integration over continuous states and using the
orthonormality of ψext

n , we write S0 in the form

S0 = 2πh̄
N∑

n,m=1

/Eself
n · δ(ωnm)δnm. (4.19)

In the self-field part of the action we separate the terms according to En = Em, Er = Es
and according to Es = En, Er = Em, the only two ways of satisfying the overall δ-function
for discrete spectrum energies. And since S = 0 to this order of iteration we can solve for
/Eself

n . The action and the total energy of the system are related by a δ-function. Cancelling
this δ-function as well as the sum over n to obtain the energy shift of a fixed level n, we get

/Eself
n = e2h̄

4π

N∑
m=1

∫ ∞

−∞
dq1 P 1

q2
1

·Gnn,mm(q1)− e2h̄

8π

N∑
m=1

×
∫ ∞

−∞

dq1

|q1|P
1

1
c
ωnm − |q1|

(Gnm,mn(q1) +Gmn,nm(q1)) + i
e2h̄c

4

×
∑
(m<n)

1

ωnm
Re

[
Gnm,mn

(
1

c
ωnm

)
+Gnm,mn

(
1

c
ωmn

)]
(4.20)
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where

Gnm,rs(q1) ≡ T ext,µ
nm (q1)T

ext
rs,µ(−q1)− T ext,0

nm (0)T ext,0
rs (0)

P stands for the principal value prescription, while Re means the real part. The superscript
ext here indicates that the Fourier components (4.18) must be calculated by using ψext

n .
The last term in (4.20) contributes ifm < n. This shows that only the ground state n = 1 of

our N -level system is stable. The energy shift for the excited states n = 2, . . . , N is complex,
so the imaginary part of the shift can be identified with the spontaneous emission of the excited
states due to self-interaction.

5. Conclusions

(1) We have studied the bound state problem for the Dirac particle moving in both an
external and its own radiation fields in (1 + 1) dimensions. We have shown that if the total
electric charge of the system vanishes, then the asymptotically linearly rising part of the external
potential which was responsible for nonexistence of bound states in the external field problem
without self-interaction is cancelled by the self-potential of the zero mode of the Dirac particle
charge density. The resulting Dirac equation includes only that part of the external potential
which is finite at spatial infinities and also the self-potential created by the non-zero modes of
the charge density.

We have proved that this equation has a set of solutions which show that the Dirac particle
and external charges are confined in a stable system. These solutions correspond to energy
levels in the band |E| < mc2. Only the lowest level is precise. The higher levels have a nonzero
linewidth which manifests itself as spontaneous emission. This picture is characteristic for
hydrogen-like atoms. According to the self-field approach, the hydrogen atom has no precisely
defined sharp energy levels, other than the ground state [2–4]. The excited states cannot be
stable due to radiation reaction.

(2) We have solved the bound state problem for the external potential created by two
positive static charges of the same value. All other cases when we have two or more external
charges can be considered analogously.

The exceptional case is one external charge at the origin. The potential created by this
charge consists only of the asymptotically linearly rising part, so the corresponding nonlinear
Dirac equation does not include any external field. This means that the approximation when
the self-interaction contribution to the spectrum is small with respect to the one of the external
field cannot be applied. We need here to look for other ways to solve the nonlinear Dirac
equation. This problem remains open.

(3) Vanishing of the total electric charge is the condition necessary for the existence of
bound states of the Dirac particle and external static charges on line. If the total electric
charge is not zero, then the Dirac equation does not reveal bound state solutions. Therefore,
in the Dirac theory on line bound states can be only neutral. This is one of the peculiarities of
one-dimensional physics.

We can consider charged states as well, but these states are not stable. The presence of
an uncompensated electric charge leads to the linearly rising Coulomb potential in the Dirac
equation and to a potential of the inverted oscillator type in the corresponding Schrödinger
equation. Such potentials are known to allow only metastable states [12]. So for limited
times the Dirac particles and external charges can be confined in a charged metastable state.
Metastable states can decay into stable ones. If particles emitted in decay take away a charge
equal to the charge of the metastable state, then the remaining particles can create a neutral
bound state.
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